martes, 28 de junio de 2011

PLACAS TECKTONICAS

                                       LAS PLACAS tectónicas
La tectónica de placas (del griego τεκτονικός, tektonicós, "el que construye") es una teoría geológica que explica la forma en que está estructurada la litosfera (la porción externa más fría y rígida de la Tierra). La teoría da una explicación a las placas tectónicas que forman la superficie de la Tierra y a los desplazamientos que se observan entre ellas en su movimiento sobre el manto terrestre fluido, sus direcciones e interacciones. También explica la formación de las cadenas montañosas (oro génesis). Asimismo, da una explicación satisfactoria de por qué los terremotos y los volcanes se concentran en regiones concretas del planeta (como el cinturón de fuego del Pacífico) o de por qué las grandes fosas submarinas están junto a islas y continentes y no en el centro del océano.
Vectores de velocidad de las placas tectónicas obtenidos mediante posicionamiento preciso GPS.
Las placas tectónicas se desplazan unas respecto a otras con velocidades de 2,5 cm/año[1] lo que es, aproximad amente, la velocidad con que crecen las uñas de las manos. Dado que se desplazan sobre la superficie finita de la Tierra, las placas interaccionan unas con otras a lo largo de sus fronteras o límites provocando intensas de formaciones en la corteza y litosfera de la Tierra, lo que ha dado lugar a la formación de grandes cadenas montañosas (verbigracia los Andes y Alpes) y grandes sistemas de fallas asociadas con éstas (por ejemplo, el sistema de fallas de San Andrés). El contacto por fricción entre los bordes de las placas es responsable de la mayor parte de los terremotos. Otros fenómenos asociados son la creación de volcanes (especialmente notorios en el cinturón de fuego del océano Pacífico) y las fosas oceánicas.
Las placas tectónicas se componen de dos tipos distintos de litosfera: la corteza continental, más gruesa, y la corteza oceánica, la cual es relativa mente delgada. La parte superior de la litosfera se le conoce como Corteza terrestre, nuevamente de dos tipos (continental y oceánica). Esto significa que una placa litosfera puede ser una placa continental, una oceánica, o bien de ambos, si fuese así se le denomina placa mixta.
Uno de los principales puntos de la teoría propone que la cantidad de superficie de las placas (tanto continental como oceánica) que desaparecen en el manto a lo largo de los bordes convergen tes de abducción está más o menos en equilibrio con la corteza oceánica nueva que se está formando a lo largo de los bordes divergentes (dorsales oceánicas) a través del proceso conocido como expansión del fondo oceánico. También se suele hablar de este proceso como el principio de la "cinta transportadora". En este sentido, el total de la superficie en el globo se mantiene constante, siguiendo la analogía de la cinta transportadora, siendo la corteza la cinta que se desplaza gracias a las fuertes corrientes convictas de la astenósfera, que hacen las veces de las ruedas que transportan esta cinta, hundiéndose la corteza en las zonas de convergencia, y generándose nuevo piso oceánico en las dorsales.
La teoría también explica de forma bastante satisfactoria la forma como las inmensas masas que componen las placas tectónicas se pueden "desplazar", algo que quedaba sin explicar cuando Alfredo Wegener propuso la teoría de la Deriva Continental, aunque existen varios modelos que coexisten: Las placas tectónicas se pueden desplazar porque la litosfera tiene una menor densidad que la astenósfera, que es la capa que se encuentra inmediata mente inferior a la corteza. Las variaciones de densidad laterales resultan en las corrientes de convección del manto, mencionadas anteriormente. Se cree que las placas son impulsadas por una combinación del movimiento que se genera en el fondo oceánico fuera de la dorsal (debido a variaciones en la topografía y densidad de la corteza, que resultan en diferencias en las fuerzas gravitacionales, arrastre, succión vertical, y zonas de abducción. Una explicación diferente consiste en las diferentes fuerzas que se generan con la rotación del globo terrestre y las fuerzas de marea del Sol y de la Luna. La importan
La tectónica de placas (del griego τεκτονικός, tektonicós, "el que construye") es una teoría geológica que explica la forma en que está estructurada la litosfera (la porción externa más fría y rígida de la Tierra). La teoría da una explicación a las placas tectónicas que forman la superficie de la Tierra y a los desplazamientos que se observan entre ellas en su movimiento sobre el manto terrestre fluido, sus direcciones e interacciones. También explica la formación de las cadenas montañosas (oro génesis). Asimismo, da una explicación satisfactoria de por qué los terremotos y los volcanes se concentran en regiones concretas del planeta (como el cinturón de fuego del Pacífico) o de por qué las grandes fosas submarinas están junto a islas y continentes y no en el centro del océano.
Vectores de velocidad de las placas tectónicas obtenidos mediante posicionamiento preciso GPS.
Las placas tectónicas se desplazan unas respecto a otras con velocidades de 2,5 cm/año[1] lo que es, aproximad amente, la velocidad con que crecen las uñas de las manos. Dado que se desplazan sobre la superficie finita de la Tierra, las placas interaccionan unas con otras a lo largo de sus fronteras o límites provocando intensas de formaciones en la corteza y litosfera de la Tierra, lo que ha dado lugar a la formación de grandes cadenas montañosas (verbigracia los Andes y Alpes) y grandes sistemas de fallas asociadas con éstas (por ejemplo, el sistema de fallas de San Andrés). El contacto por fricción entre los bordes de las placas es responsable de la mayor parte de los terremotos. Otros fenómenos asociados son la creación de volcanes (especialmente notorios en el cinturón de fuego del océano Pacífico) y las fosas oceánicas.
Las placas tectónicas se componen de dos tipos distintos de litosfera: la corteza continental, más gruesa, y la corteza oceánica, la cual es relativa mente delgada. La parte superior de la litosfera se le conoce como Corteza terrestre, nuevamente de dos tipos (continental y oceánica). Esto significa que una placa litosfera puede ser una placa continental, una oceánica, o bien de ambos, si fuese así se le denomina placa mixta.
Uno de los principales puntos de la teoría propone que la cantidad de superficie de las placas (tanto continental como oceánica) que desaparecen en el manto a lo largo de los bordes convergen tes de abducción está más o menos en equilibrio con la corteza oceánica nueva que se está formando a lo largo de los bordes divergentes (dorsales oceánicas) a través del proceso conocido como expansión del fondo oceánico. También se suele hablar de este proceso como el principio de la "cinta transportadora". En este sentido, el total de la superficie en el globo se mantiene constante, siguiendo la analogía de la cinta transportadora, siendo la corteza la cinta que se desplaza gracias a las fuertes corrientes convictas de la astenósfera, que hacen las veces de las ruedas que transportan esta cinta, hundiéndose la corteza en las zonas de convergencia, y generándose nuevo piso oceánico en las dorsales.
La teoría también explica de forma bastante satisfactoria la forma como las inmensas masas que componen las placas tectónicas se pueden "desplazar", algo que quedaba sin explicar cuando Alfredo Wegener propuso la teoría de la Deriva Continental, aunque existen varios modelos que coexisten: Las placas tectónicas se pueden desplazar porque la litosfera tiene una menor densidad que la astenósfera, que es la capa que se encuentra inmediata mente inferior a la corteza. Las variaciones de densidad laterales resultan en las corrientes de convección del manto, mencionadas anteriormente. Se cree que las placas son impulsadas por una combinación del movimiento que se genera en el fondo oceánico fuera de la dorsal (debido a variaciones en la topografía y densidad de la corteza, que resultan en diferencias en las fuerzas gravitacionales, arrastre, succión vertical, y zonas de abducción. Una explicación diferente consiste en las diferentes fuerzas que se generan con la rotación del globo terrestre y las fuerzas de marea del Sol y de la Luna. La importancia relativa de cada uno de esos factores queda muy poco clara, y es todavía objeto de debatecía relativa de cada uno de esos factores queda muy poco clara, y es todavía objeto de debate       Placas existentes
Principales placas tectónicas.
Existen, en total, 15 placas :
  • Placa Africana
  • Placa Antártica
  • Placa Arábiga
  • Placa de Cocos
  • Placa del Caribe
  • Placa Escocesa (Secta)
  • Placa Euro asiática
  • Placa Filipina
  • Placa India
  • Placa australiana
  • Placa Juan de Fu ca
  • Placa de Nazca
  • Placa Norteamericana
  • Placa del PacíficoOrigen de las placas tectónicas Se piensa que su origen se debe a corrientes de convección en el interior del manto terrestre, en la capa conocida como estannífera, las cuales fragmentan a la litosfera. Las corrientes de convección son patrones circulatorios que se presentan en fluidos que se calientan en su base. Al calentarse la parte inferior del fluido se dilata. Este cambio de densidad produce una fuerza de flotación que hace que el fluido caliente ascienda. Al alcanzar la superficie se enfría, desciende y se vuelve a calentar, estableciéndose un movimiento circular auto-organizado. En el caso de la Tierra se sabe, a partir de estudios de reajuste glaciar, que la astenosfera se comporta como un fluido en escalas de tiempo de miles de años y se considera que la fuente de calor es el núcleo terrestre. Se estima que éste tiene una temperatura de 4500 °C. De esta manera, las corrientes de convección en el interior del planeta contribuyen a liberar el calor original almacenado en su interior, que fue adquirido durante la formación de la Tierra.
    Así, en zonas donde dos placas se mueven en direcciones opuestas (como es el caso de la placa Africana y de Norteamericana, que se separan a lo largo de la cordillera del Atlántico) las corrientes de convección forman nuevo piso oceánico, caliente y flotante, formando las cordilleras meso-oceánicas o centros de dispersión. Conforme se alejan de los centros de dispersión las placas se enfrían, tornándose más densas y hundiéndose en el manto a lo largo de zonas de abducción, donde el material litosfera es fundido y reciclado.
    Una analogía frecuente mente empleada para describir el movimiento de las placas es que éstas "flotan" sobre la astenósfera como el hielo sobre el agua. Sin embargo, esta analogía es parcialmente válida ya que las placas tienden a hundirse en el manto como se describió anteriormente

     Antecedentes históricos

    La tectónica de placas tiene su origen en dos teorías que le precedieron: la teoría de la deriva continental y la teoría de la expansión del fondo oceánico.
    La primera fue propuesta por Alfredo Wegener a principios del siglo XX y pretendía explicar el intrigante hecho de que los contornos de los continentes ensamblan entre sí como un rompe cabezas y que éstos tienen historias geológicas comunes. Esto sugiere que los continentes estuvieron unidos en el pasado formando un supercontinente llamado Pangue (en idioma griego significa "todas las tierras") que se fragmentó durante el período Perico, originando los continentes actuales. Esta teoría fue recibida con escepticismo y eventual mente rechazada porque el mecanismo de fragmentación (deriva polar) no podía generar las fuerzas necesarias para desplazar las masas continentales. -Las placas se mueven y causan terremotos-. La teoría de expansión del fondo oceánico fue propuesta hacia la mitad del siglo XX y está sustentada en observaciones geológicas y geofísicas que indican que las cordilleras meso-oceánicas funcionan como centros donde se genera nuevo piso oceánico conforme los continentes se alejan entre sí. Esto fue propuesto por John Tuzo Wilson.
    La teoría de la tectónica de placas fue forjada principal mente entre los años 50 y 60 y se le considera la gran teoría unificadora de las Ciencias de la Tierra, ya que explica una gran cantidad de observaciones geológicas y geofísicas de una manera coherente y elegante. A diferencia de otras ramas de las ciencias, su concepción no se le atribuye a una sola persona como es el caso de Isaac Newton o Charles Darwin. Fue producto de la colaboración internacional y del esfuerzo de talentosos geólogos (Tuzo Wilson, Walter Pitman), geofísicos (Harry Hammond Hess, Allan V. Cox) y sismólogos (Linn Sykes, Hiroo Kanamori, Maurice Ewing), que poco a poco fueron aportando información acerca de la estructura de los continentes, las cuencas oceánicas y el interior de la Tierra.

     Límites de placas

    Son los bordes de una placa y es aquí donde se presenta la mayor actividad tectónica (sismos, formación de montañas, actividad volcánica), ya que es donde se produce la interacción entre placas. Hay tres clases de límite:
    • Divergentes: son límites en los que las placas se separan unas de otras y, por lo tanto, emerge magma desde regiones más profundas (por ejemplo, la dorsal meso atlántica formada por la separación de las placas de Eufrasia y Norteamericana y las de África y Sudamericana).
    • Convergen tes: son límites en los que una placa choca contra otra, formando una zona de abducción (la placa oceánica se hunde bajo de la placa continental) o un cinturón orgánico (si las placas chocan y se comprimen). Son también conocidos como "bordes activos".
    En determinadas circunstancias, se forman zonas de límite o borde, donde se unen tres o más placas formando una combinación de los tres tipos de límites.                                                            Límite divergente o constructivo: las dorsales
    Artículo principal: Borde divergente
    Son las zonas de la litosfera en que se forma nueva corteza oceánica y en las cuales se separan las placas. En los límites divergentes, las placas se alejan y el vacío que resulta de esta separación es rellenado por material de la corteza, que surge del magma de las capas inferiores. Se cree que el surgimiento de bordes divergentes en las uniones de tres placas está relacionado con la formación de puntos calientes. En estos casos, se junta material de la astenosfera cerca de la superficie y la energía cinética es suficiente para hacer pedazos la litosfera. El punto caliente que originó la dorsal meso atlántica se encuentra actualmente debajo de Islandia, y el material nuevo ensancha la isla algunos centímetros cada siglo.
    Un ejemplo típico de este tipo de límite son las dorsales oceánicas (por ejemplo, la dorsal meso atlántica) y en el continente las grietas como el Gran Valle del Rifa.

    Límite convergente o destructivo

    La placa oceánica se hunde por debajo de la placa continental.
    Artículo principal: Borde convergente
    Las características de los bordes convergen tes dependen del tipo de litosfera de las placas que chocan. Con frecuencia las placas no se deslizan en forma continua; sino que se acumula tensión en ambas placas hasta llegar a un nivel de energía acumulada que sobrepasa el necesario para producir el deslizamiento brusco de la placa marina. La energía potencial acumulada es liberada como presión o movimiento; debido a la titánica cantidad de energía almacenada, estos movimientos ocasionan terremotos, de mayor o menor intensidad. Los puntos de mayor actividad sísmica suelen asociarse con este tipo límites de placas.
    • Cuando una placa oceánica (más densa) choca contra una continental (menos densa) la placa oceánica es empujada debajo, formando una zona de subducción. En la superficie, la molificación topográfica consiste en una fosa oceánica en el agua y un grupo de montañas en tierra.
    • Cuando dos placas oceánicas chocan, el resultado es un arco de islas (por ejemplo, Japón).  Límite transforman te o conservativo
    Artículo principal: Borde transforman
    El movimiento de las placas a lo largo de las fallas de transformación puede causar considerables cambios en la superficie, lo que es particularmente significativo cuando esto sucede en las proximidades de un asentamiento humano. Debido a la fricción, las placas no se deslizan en forma continua; sino que se acumula tensión en ambas placas hasta llegar a un nivel de energía acumulada que sobrepasa el necesario para producir el movimiento. La energía potencial acumulada es liberada como presión o movimiento en la falla. Debido a la titánica cantidad de energía almacenada, estos movimientos ocasionan terremotos, de mayor o menor intensidad.
    Un ejemplo de este tipo de límite es la falla de San Andrés, ubicada en el Oeste de Norteamericana, que es parte del sistema de fallas producto del roce entre la placa Norteamericana y la del Pacífico.

     Medición de la velocidad de las placas tectónicas

    La medición actual de la velocidad de las placas tectónicas se realiza mediante medidas precisas de GPS. La velocidad antigua de las placas se obtiene mediante la restitución de cortes geológicos (en corteza continental) o mediante la medida de la posición de las inversiones del campo magnético terrestre registradas en el fondo oceánico

No hay comentarios:

Publicar un comentario